Conductivity of Iron(II) Sulfate in Aqueous Solution at Various Temperatures

Eiji Kubota,* Yoshiaki Мосніzuki, and Masatoki Yokoi Department of Chemistry, Faculty of Science, Shinshu University, Asahi, Matsumoto 390 (Received March 24, 1988)

Synopsis. The molar conductivity of iron(II) sulfate, FeSO₄, in water was measured in the temperature range 10— 35 °C. Data were analyzed by the Quint-Viallard equation, and the resulting ion association constant, K_A , was applied to the Bjerrum equation to determine the contact ion size, $R_{\rm B}$. The limiting ionic molar conductivity of iron(II) at 25 °C is $\lambda_0(1/2{\rm Fe}^{2+})=53.8~{\rm S\,cm}^2{\rm mol}^{-1}$. Thermodynamic properties of ion association reactions are $\Delta G_{298}^{\circ} = -13.7 \text{ kJ}$ mol^{-1} , $\Delta H^{\circ} = 9.7 \text{ kJ mol}^{-1}$, and $\Delta S_{298}^{\circ} = 78.0 \text{ J K}^{-1} \text{ mol}^{-1}$.

October, 1988] © 1988 The Chemical Society of Japan

Divalent metal sulfates have long been utilized as the most typical 2:2 type of electrolytes for the study of aqueous electrolyte solutions. 1-6) Regarding iron(II) sulfate, however, precise conductivity data of its aqueous solution are not available, except the work of Demassieux and Fedroff³⁾ at 25 °C. Conductivity data for the other iron(II) salts are not available either in the literature. This is probably because the salts undergo oxidation markedly on exposure to atmospheric oxygen. Thus we attempted to redetermine molar conductivities of iron(II) sulfate in aqueous solution at several temperatures by avoiding oxidation as carefully as possible.

Experimental

The preparation and purification of FeSO₄ were conducted in nitrogen atmosphere. A reagent grade FeSO4 was recrystallized from water by adding a small amount of ethanol. The purified salt was dried at room temperature to obtain crystals of heptahydrate. The crystals were pulverized before use. Conductivity water was prepared by distilling water three times, and the distilled water was allowed to pass through a mixed bed ion-exchange resin shortly before use.

Measurements were made at a frequency of 1 kHz with a linear type bridge, 7) temperature variation being ± 0.003 °C. The conductivity cell was equipped with a platinized electrode, and the cell constant was 0.99074±0.00001 cm⁻¹ at 25 °C. No detectable change in the cell constant was observed in the temperature range 10-35°C.

On starting each run, a nitrogen gas stream was bubbled gently through the conductivity water in the cell for about 30 to 40 min, and the conductivity of the water was measured after it reached an equilibrium value, which was less than $1.0\times10^{-7}~S~cm^{-1}$. The concentration (10^{-4} to $10^{-3}~mol~dm^{-3}$) of FeSO₄ was adjusted by direct dissolution of pulverized specimen into the cell by utilizing Hawes-Kay's cupdropping device8) in an atmosphere of nitrogen. The variation in conductivity of the solution with time was 0.02% or less in 5 h after the preparation of the solution.

Results and Discussion

Conductivity data of aqueous solutions in the temperature range 10-35 °C are given in Table 1.

The conductivity data were analyzed by the Quint-Viallard conductivity theory in the form of Eq. 1:9)

$$\Lambda = \gamma [\Lambda_0 - Sc^{1/2}\gamma^{1/2} + Ec\gamma \log c\gamma + J_1c\gamma - J_2c^{3/2}\gamma^{3/2}], \quad (1)$$

$$K_{\mathbf{A}} = (1 - \gamma)/c\gamma^2 f_{\pm}^2, \tag{2}$$

$$-\log f_{+} = Ac^{1/2}\gamma^{1/2}/(1 + Bac^{1/2}\gamma^{1/2}), \tag{3}$$

where c is the concentration, γ is the degree of dissociation, K_A is the ion association constant, and f_{\pm} is the mean ionic activity coefficient given by the extended Debye-Hückel theory of Eq. $3.^{10)}$ In Eq. 3, A and Bdepend upon solvent properties, and δ is the ion size

Table 1. Conductivity Data in Aqueous Solutions at Various Temperaturesa)

10°C		15°C		20 °C		
10 ⁴ c	Λ	10 ⁴ c	Λ	10 ⁴ c	1	
5.0500	81.447	3.5268	93.939	4.7768	104.15	
9.5538	76.985	8.8480	87.161	8.5492	98.752	
14.698	73.280	13.435	83.170	13.372	93.882	
22.439	69.175	19.425	79.411	18.778	89.898	
31.680	65.496	28.362	75.186	28.739	84.400	
43.811	61.890	38.008	71.836	39.230	80.262	
25	25 °C		30°C		35 °C	
10 ⁴ c	1	10 ⁴ c	1	10 ⁴ c	1	
5.5040	114.81	3.8277	132.38	4.0641	145.82	
9.9449	108.22	8.3249	123.31	9.6007	133.80	
14.446	103.40	13.478	116.32	15.528	125.76	
21.856	97.592	20.955	109.43	22.871	118.71	
29.661	92.999	32.964	101.69	33.314	111.56	

a) $c/\text{mol dm}^{-3}$; $\Lambda(1/2\text{FeSO}_4)/\text{S cm}^2\text{mol}^{-1}$, molar conductivity.

86.622 49.691

45.036

Table 2. Conductivity Parameters of FeSO₄ in Aqueous Solutions at Various Temperatures^{a)}

94.615 45.505

105.43

	A_0	$a_{\scriptscriptstyle \mathrm{J}_2}$	K_{A}	$\sigma \Lambda$	$R_{\mathtt{B}}$
10	93.1±0.3	12.6±0.2	201±4	0.06	4.3
15	105.0 ± 0.1	11.4 ± 0.1	215 ± 3	0.06	4.3
20	119.4 ± 0.1	11.4 ± 0.2	231 ± 3	0.05	4.2
25	133.8 ± 0.1	11.5 ± 0.1	247 ± 2	0.05	4. l
30	150.4 ± 0.2	11.3 ± 0.1	264 ± 3	0.08	4. l
35	167.1±0.1	11.4±0.1	281±3	0.07	4.0

a) $\Lambda_0(1/2 \text{ FeSO}_4)/\text{S cm}^2 \text{ mol}^{-1}$, limiting molar conductivity. d_{J_2}/A , ion size parameter for the J_2 term. K_A/dm^3 mol^{-1} , ion association constant. $\sigma \Lambda/\%$, relative standard deviation in Λ . $R_B/\text{Å}$, contact ion size for Bjerrum's equation.

Table 3. Limiting Molar Conductivity of Ions in Aqueous Solutions at 25 °Ca)

$Ion(M^{2+})$	Mn ²⁺	Fe ²⁺	Co ²⁺	Ni ²⁺	Cu ²⁺	Zn ²⁺
$\lambda_0(1/2M^{2+})$	53.1 ^{c)}	53.8 ^{b)}	52.8 ^{d)}	53.5 ^{d)}	53.9 ^{e)}	54.3 ^d)

a) $\lambda_0(1/2M^{2+})/S$ cm² mol⁻¹, limiting ionic molar conductivity. b) This work. c) Ref. 14. d) Ref. 4. e) Ref. 5.

Table 4.	Thermodynamic	roperties for Ion	Association	Reaction in A	Aqueous Solutions
----------	---------------	-------------------	-------------	---------------	-------------------

Reaction	K _{A 298}	ΔG_{298}^{o}	Δ <i>H</i> °	ΔS_{298}°
Reaction	$dm^3 mol^{-1}$	kJ mol⁻¹	kJ mol ⁻¹	J K ⁻¹ mol ⁻¹
Fe ²⁺ ·SO ₄ ^{2-a)}	247	-13.7 ± 0.1	9.72±0.05	78.5±0.4
$Co^{2+} \cdot SO_4^{2-b}$	178	-12.80 ± 0.04	5.00 ± 0.30	59.8 ± 1.2
$Ni^{2+} \cdot SO_4^{2-b}$	187	-12.97 ± 0.04	5.18 ± 0.16	60.9 ± 0.6
$Zn^{2+} \cdot SO_4^{2-b}$	165	-12.65 ± 0.04	8.65 ± 0.34	71.4 ± 1.3

a) This work. b) Ref. 4.

parameter. The coefficients J_1 and J_2 are functions of ion size parameter ∂_{J_2} , and J_2 , and J_3 contain solvent properties. The ion size parameters appearing in the J_1 and J_2 terms were fixed as equal to Bjerrum's J_3 values, and the best fit J_3 values for J_3 were calculated. Table 2 shows the best fit parameters at the minimum value of $\sigma \Lambda$. $\sigma \Lambda$ (%) is defined as

$$\sigma \Lambda = \left[\sum (\Lambda_{\text{obsd}} - \Lambda_{\text{calcd}})^2 / (N - 3)\right]^{1/2},\tag{4}$$

where N is the number of experimental points.

When a conductivity equation containing a $c^{3/2}$ term is applied, the fitting of the data is generally better, but the ion size parameter a_{J2} for the 2:2 type electrolyte is usually as large as 10—20 Å. In the present work a_{J2} of 11—13 Å was obtained. If one assumes the validity of Bjerrum's Eq. 5, the contact ion size R_B can be calculated from the resulting K_A : $L^{12,13}$

$$K_{\rm A}({\rm calcd}) = \frac{4\pi N}{1000} \int_{R_{\rm B}}^{q} r^2 \exp(e^2/rDkT) dr. \tag{5}$$

The results are also given in Table 2. The parameters, Λ_0 and K_A increase with increasing temperature. The limiting molar conductivity of Fe²⁺ ion at 25 °C is obtained as λ_0 (1/2 Fe²⁺)=53.8 S cm² mol⁻¹ by subtracting the value λ_0 (1/2SO₄²⁻)=80.0 of SO₄²⁻ ion from the Λ_0 value.¹⁰⁾ Demassieux and Fedroff's data³⁾ give λ_0 $(1/2\text{Fe}^{2+})=49.8$. Table 3 shows a comparison with other divalent transition metal ions. The ion size parameter a_{12} has a relatively large value, more than 10 Å, whereas $R_{\rm B}$ has a substantially reasonable value (the sum of the ionic crystal radii is $\approx 3.3 \text{ Å}$). The $\log K_A$ -1/T plot gives a good linearity. The resulting thermodynamic properties of ion association reaction are shown in Table 4 with data of other sulfate solutions. It can be seen that the properties of $Fe^{2+} \cdot SO_4^{2-}$ are in parallel with those of the other sulfates, though the absolute values are a little larger than the others. The positive ΔS° has been considered as due to the decreased orientation of water molecules when the ionpair forms. 16)

The authors wish to thank the staffs of the Shinshuu

University, Nagoya University, and Tokyo University Computation Centers for the use of the computers. The present work was partially supported by a Grantin-Aid for Science Research No. 62540459 from the Ministry of Education, Science and Culture.

References

- 1) G. J. Janz and R. P. T. Tomkins, "Nonaqueous Electrolytes Handbook," Vol. 1, Academic Press, New York-London (1972), pp. 145, 1063; Vol. 2 (1973), p. 800.
- 2) V. M. M. Lobo, "Electrolyte Solutions: Literature Data on Thermodynamic and Transport Properties," Vol. I, Coimbra, Poltugal (1984); V. M. M. Lobo and J. L. Quaresma, Vol. II (1981).
- 3) N. Demassieux and B. Fedroff, Ann. Chim., 16, 215 (1941).
- 4) S. Katayama, Bull. Chem. Soc. Jpn., 46, 109 (1973); S. Katayama, J. Solution Chem., 5, 241 (1976).
- 5) B. B. Owen and R. W. Gurry, J. Am. Chem. Soc., 60, 3074 (1938).
- 6) A. D. Pethybridge and S. S. Taba, Faraday Discuss. Chem. Soc., 64, 274 (1977).
- 7) Conductivity bridge: Model 360-S by Fuso Seisakusho, Ltd. Standard resistor: esi, Ltd., within ± 0.01 °C.
- 8) J. L. Hawes and R. L. Kay, J. Phys. Chem., **69**, 2420 (1965).
- 9) J. Quint and A. Viallard, J. Solution Chem., 7, 135, 525, 533 (1978).
- 10) R. A. Robinson and R. H. Stokes, "Electrolyte Solutions," Butterworths, London (1965), pp. 229, 457, 463.
- 11) E. Kubota and M. Yokoi, Bull. Chem. Soc. Jpn., 49, 2674 (1976); E. Kubota and M. Yokoi, ibid., 50, 1422 (1977).
- 12) N. Bjerrum, Kgl. Dan. Vidensk., 7, No. 9 (1926).
- 13) J. C. Justice, J. Chem. Phys. Physicochem. Biol., 65, 353 (1968); J. C. Justice, Electrochim. Acta, 16, 701 (1968); E. Renard and J. C. Justice, J. Solution Chem., 3, 633 (1974).
- 14) T. R. Broadwater and D. F. Evans, J. Solution Chem., 3, 757 (1974).
- 15) R. D. Shannon, Acta Crystallogr., Sect. A, **32**, 751 (1976); H. D. B. Jenkins and K. P. Thakur, J. Chem. Educ., **56**, 576 (1979).
- 16) G. H. Nancollas, *Discussions Faraday Soc.*, **24**, 108 (1957); "Interactions in Electrolyte Solutions," Elsevier Publishing Company, Amsterdam-London-New York (1966), p. 133.